СОВРЕМЕННЫЕ ПОДХОДЫ В ЛЕЧЕНИИ КЕРАТОКОНУСА В РАЗНЫХ СТРАНАХ МИРА (обзор литературы)

СОВРЕМЕННЫЕ ПОДХОДЫ В ЛЕЧЕНИИ КЕРАТОКОНУСА В РАЗНЫХ СТРАНАХ МИРА (обзор литературы)

Авторы

  • Д.М. Туйчибаева Ташкентский государственный стоматологический институт
  • А.А. Ким Ташкентский государственный стоматологический институт

Ключевые слова:

эктазия роговицы, ускоренный кросслинкинг, СXL плюс, Epi-on кросслинкинг, интрастромальные роговичные сегменты, лечения кератоконуса

Аннотация

Лечение кератоконуса значительно изменилось за последние два десятилетия. Появление новых вмешательств, таких как кросслинкинг роговицы, интрастромальные роговичные сегменты и комбинированные методы лечения,

предоставляет специалистам по роговице множество вариантов лечения для зрительной реабилитации пациентов с кератоконусом. В этом обзоре обобщаются текущие данные об этих методах лечения и подчеркивается их место в лечении кератоконуса, в то время как новые многообещающие новые методы лечения находятся в стадии изучения.

Библиографические ссылки

Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42:297–319.

Grzybowski A, McGhee CN. The early history of keratoconus prior to Nottingham’s landmark 1854 treatise on conical cornea: a review. Clin Exp Optom. 2013;96(2):140–5. 3. Gokul A, Patel DV, McGhee CN. Dr John Nottingham’s 1854 landmark treatise on

conical cornea considered in the context of the current knowledge of keratoconus. Cornea. 2016;35(5):673–8.

Gomes JA, et al. Global consensus on keratoconus and ectatic diseases. Cornea. 2015;34(4):359–69.

Rizaev J.A., Тuychibaeva D.M. Pokazateli zabolevayemosti glaukomoy

Volume 2, Issue 1, 2023

medunion medunion.uz

Литература / References

sredi vzroslogo naseleniya Respubliki Uzbekistan. Stomatologiya. 2021;1(82):102–107.

Тuychibaeva D.M., Rizaev J.A., Yangiva N.R. Ways to improve the system of medical examination of patients with primary glaucoma. Journal Medicine and innovations. 2021;3:11-19.

Rizaev, J., & Tuychibaeva, D. (2022). Study of the general state and dynamics of primary and general disability due to glaucoma of the adults in the republic of

Uzbekistan and the city of Tashkent. Journal of Dentistry and Craniofacial Research, 1 (2), 75-77.

Tuychibaeva D., Rizaev J., Malinouskaya I. Dynamics of primary and general incidence due to glaucoma among the adult population of Uzbekistan. Ophthalmology. Vostochnaya Yevropa. 2021;11.1:27–38. 9. Tuychibaeva D.M. Main Characteristics of the Dynamics of Disability Due to Glaucoma in Uzbekistan // "Ophthalmology. Eastern Europe", 2022;12.2:195-204.

Tuychibaeva D.M., Rizayev J.A., Stozharova N.K. Longitudinal changes in the incidence of glaucoma in Uzbekistan. // J.ophthalmol.(Ukraine). 2021;4:43-7.

Heikal MA, Abdelshafy M, Soliman TT, Hamed AM. Refractive and visual outcomes after Keraring intrastromal corneal ring segment implantation for keratoconus assisted by femtosecond laser at 6 months follow-up. Clin Ophthalmol. 2016;23(11):81–6.

Shetty R, Kurian M, Anand D, Mhaske P, Narayana KM, Shetty BK. Intacs in advanced keratoconus. Cornea. 2008;27:1022–9.

Shabayek MH, Alió JL. Intrastromal corneal ring segment implantation by femtosecond laser for keratoconus correction. Ophthalmology. 2007;114(9):1643–52.

Alió JL, Artola A, Hassanein A, Haroun H, Galal A. One or 2 Intacs segments for the correction of keratoconus. J Cataract Refract Surg. 2005;31:943–53. 15. Siganos D, Ferrara P , Chatzinikolas K, Bessis N, Papastergiou G. Ferrara intrastromal corneal rings for the correction of keratoconus. J Cataract Refract Surg. 2002;28:1947–51.

Kanellopoulos AJ, Pe LH, Perry HD, Donnenfeld ED. Modified intracorneal ring segment implantations (INTACS) for

the management of moderate to advanced keratoconus: efficacy and complications. Cornea. 2006;25:29–33.

Vega-Estrada A, Alio JL, Brenner LF, et al. Outcome analysis of intracorneal ring segments for the treatment of keratoconus based on visual, refractive, and aberrometric impairment. Am J Ophthalmol. 2013;155(3):575–84.

Vega-Estrada A, Alió JL, Plaza- Puche AB. Keratoconus progression after intrastromal corneal ring segment implantation in young patients: five-year follow-up. J Cataract Refract Surg. 2015;41(6):1145–52.

Pramanik S, Musch DC, Sutphin JE, Farjo AA. Extended long-term outcomes of penetrating keratoplasty for keratoconus. Ophthalmology. 2006;113:1633–8.

Sarnicola V, Toro P, Gentile D, Hannush SB. Descemetic DALK and predescemetic DALK: outcomes in 236 cases of keratoconus. Cornea. 2010;29:53–

Parker JS, van Dijk K, Melles GR. Treatment options for advanced keratoconus: a review. Surv Ophthalmol. 2015;60:459–80.

Lu Y, Grisolia AB, Ge YR, et al. Comparison of femtosecond laser-assisted descemetic and predescemetic lamellar keratoplasty for keratoconus. Indian J Ophthalmol. 2017;65(1):19–23.

Volume 2, Issue 1, 2023

medunion medunion.uz

Liu H, Chen Y, Wang P, et al. Efficacy and safety of deep anterior lamellar keratoplasty vs. penetrating keratoplasty for keratoconus: a meta-analysis. PLoS One. 2015;10:1.

Jones MN, Armitage WJ, Ayliffe W, et al. Penetrating and deep anterior lamellar keratoplasty for keratoconus: a comparison of graft outcomes in the United Kingdom. Invest Ophthalmol Vis Sci. 2009;50:5625–9.

Henein C, Nanavaty MA.

Systematic review comparing penetrating keratoplasty and deep anterior lamellar keratoplasty for management of keratoconus. Cont Lens Anterior Eye. 2017;40(1):3–14.

Panda A, Vanathi M, Kumar A, Dash Y, Priya S. Corneal graft rejection. Surv Ophthalmol. 2007;52(4):375–96.

Watson SL, Tuft SJ, Dart JK. Patterns of rejection after deep lamellar keratoplasty. Ophthalmology. 2006;113(4):556–60.

Borderie VM, Sandali O, Bullet J, Gaujoux T, Touzeau O, Laroche L. Long- term results of deep anterior lamellar versus penetrating keratoplasty. Ophthalmology. 2012;119(2):249–55.

Den S, Shimmura S, Tsubota K, Shimazaki J. Impact of the descemet membrane perforation on surgical outcomes after deep lamellar keratoplasty. Am J Ophthalmol. 2007;143(5):750–4.

Melles GR, Rietveldt FJ, Beekuis

WH, Binder PS. A technique to visualize corneal incision and lamellar dissection depth during surgery. Cornea. 1999;18:80– 6.

Anwar M, Teichmann KD. Big- bubble technique to bare Descemet’s membrane in anterior lamellar keratoplasty. J Cataract Refract Surg. 2002;28(3):398– 403.

Diakonis VF, Yoo SH, Hernandez V, et al. Femtosecond-assisted big bubble: a feasibility study. Cornea. 2016;35(12):1668–71.

Siebelmann S, Steven P , Cursiefen C. Intraoperative optical coherence tomography in deep anterior lamellar keratoplasty. Klin Monbl Augenheilkd. 2016;233(6):717–21.

Farid M, Steinert RF, Gaster RN, Chamberlain W, Lin A. Comparison of penetrating keratoplasty performed with a

femtosecond laser zig-zag incision versus conventional blade trephination. Ophthalmology. 2009;116(9):1638–43.

Fung SS, Aiello F, Maurino V. Outcomes of femtosecond laser-assisted mushroom-configuration keratoplasty in advanced keratoconus. Eye (Lond). 2016;30(4):553–61.

Daniel MC, Böhringer D, Maier P, Eberwein P, Birnbaum F, Reinhard T. Comparison of long-term outcomes of femtosecond laser-assisted keratoplasty with conventional keratoplasty. Cornea. 2016;35(3):293–8.

Li S, Wang T, Bian J, Wang F, Han S, Shi W. Precisely controlled side cut in femtosecond laser-assisted deep lamellar keratoplasty for advanced keratoconus. Cornea. 2016;35(10):1289–94.

Wollensak G. Corneal collagen crosslinking: new horizons. Expert Rev Ophthalmol. 2010;5:201–15.

Sandvik GF, Thorsrud A, Raen M,

Ostern AE, Sathre M, Drolsum L. Does corneal collagen cross-linking reduce the need for keratoplasties in patients with keratoconus? Cornea. 2015;34(9):991–5. 40. Godefrooij DA, Gans R, Imhof SM, Wisse RP. Nationwide reduction in the number of corneal transplantations for keratoconus following the implementation of cross-linking. Acta Ophthalmol. 2016;94(7):675–8.

Volume 2, Issue 1, 2023

medunion medunion.uz

Zhang Y, Conrad AH, Conrad GW. Effects of ultraviolet-A and riboflavin on the interaction of collagen and proteoglycans during corneal cross-linking. J Biol Chem. 2011;286(15):13011–22.

Yam JC, Chan CW, Cheng AC. Corneal collagen cross-linking demarcation line depth assessed by Visante OCT after CXL for keratoconus and corneal ectasia. J Refract Surg. 2012;28(7):475–81.

Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen

of riboflavin ultraviolet a corneal collagen cross-linking for keratoconus in Italy: the Siena eye cross study. Am J Ophthalmol. 2010;149(4):585–93.

Koller T, Mrochen M, Seiler T. Complication and failure rates after corneal crosslinking. J Cataract Refract Surg. 2009;35(8):1358–62.

Kymionis GD, Portaliou DM, Diakonis VF, Kounis GA, Panagopoulou SI, Grentzelos MA. Corneal collagen cross- linking with riboflavin and ultraviolet-A

crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135(5):620–7.

Vinciguerra P, Albè E, Trazza S, et al. Refractive, topographic, tomographic, and aberrometric analysis of keratoconic eyes undergoing corneal cross-linking. Ophthalmology. 2009;116:369–78.

Coskunseven E, Jankov MR II, Hafezi F. Contralateral eye study of corneal collagen cross-linking with riboflavin and UVA irradiation in patients with keratoconus. J Refract Surg. 2009;25:371– 6.

Wittig-Silva C, Whiting M, Lamoureux E, Lindsay RG, Sullivan LJ, Snibson GR. A randomized controlled trial of corneal collagen cross-linking in progressive keratoconus: preliminary results. J Refract Surg. 2008;24(7):S720–5. 47. Hashemi H, Seyedian MA, Miraftab M, Fotouhi A, Asgari S. Corneal collagen cross-linking with riboflavin and

irradiation in patients with thin corneas. Am J Ophthalmol. 2012;153(1):24–8.

Kymionis GD. Corneal collagen cross linking-PLUS. Open Ophthalmol J. 2011;5:10.

Kanellopoulos AJ. Comparison of sequential vs same-day simultaneous collagen cross-linking and topography- guided PRK for treatment of keratoconus. J Refract Surg. 2009;25:S812–8.

Kanellopoulos AJ, Binder PS. Management of corneal ectasia after LASIK with combined, same-day, topography- guided partial transepithelial PRK and collagen cross-linking: the Athens protocol. J Refract Surg. 2011;27(5):323–31.

Kanellopoulos AJ, Asimellis G. Novel placido-derived topography-guided excimer corneal normalization with cyclorotation adjustment: enhanced Athens protocol for keratoconus. J Refract Surg. 2015;31(11):768–73.

Kymionis GD, Portaliou DM,

ultraviolet a irradiation for keratoconus: long-term results. Ophthalmology. 2013;120:1515–20.

Raiskup F, Theuring A, Pillunat LE, Spoerl E. Corneal collagen crosslinking with riboflavin and ultraviolet-A light in progressive keratoconus: ten-year results. J Cataract Refract Surg. 2015;41(1):41–6. 49. Caporossi A, Mazzotta C, Baiocchi S, Caporossi T. Long-term results

Kounis GA, et al. Simultaneous topography- guided photorefractive keratectomy followed by corneal collagen cross-linking for keratoconus. Am J Ophthalmol. 2011;152:748–55.

Kymionis GD, Grentzelos MA,

Kankariya VP ,

transepithelial

keratectomy

crosslinking for ectatic disorders: Cretan

Pallikaris IG. Combined phototherapeutic and corneal collagen

Volume 2, Issue 1, 2023

medunion medunion.uz

protocol. J Cataract Refract Surg. 2013;39:1939.

Kapasi M, Baath J, Mintsioulis G, Jackson WB, Baig K. Phototherapeutic keratectomy versus mechanical epithelial removal followed by corneal collagen crosslinking for keratoconus. Can J Ophthalmol. 2012;47(4):344–7.

Alió JL, Toffaha BT, Piñero DP, Klonowski P, Javaloy J. Crosslinking in progressive keratoconus using an epithelial debridement or intrastromal pocket

technique after previous corneal ring segment implantation. J Refract Surg. 2011;27:737–43.

Vicente LL, Boxer Wachler BS. Factors that correlate with improvement in vision after combined Intacs and trans- epithelial corneal crosslinking. Br J Ophthalmol. 2010;94(12):1597–601.

Cakir H, Pekel G, Perente I, Genç S. Comparison of intrastromal corneal ring segment implantation only and in combination with collagen crosslinking for keratoconus. Eur J Ophthalmol. 2013;23(5):629–34.

Ferenczy PA, Dalcegio M, Koehler M, Pereira TS, Moreira H, Luciane Bugmann M. Femtosecond-assisted intrastromal corneal ring implantation for keratoconus treatment: a comparison with crosslinking combination. Arq Bras Oftalmol. 2015;78(2):76–81.

Liu XL, Li PH, Fournie P, Malecaze F. Investigation of the efficiency

of intrastromal ring segments with cross- linking using different sequence and timing for keratoconus. Int J Ophthalmol. 2015;8(4):703–8.

Coskunseven E, Jankov MR 2nd, Hafezi F, Atun S, Arslan E, Kymionis GD. Effect of treatment sequence in combined intrastromal corneal rings and corneal collagen crosslinking for keratoconus. J

Cataract Refract Surg. 2009;35(12):2084– 91.

Antonios R, Dirani A, Fadlallah A, et al. Safety and visual outcome of Visian toric ICL implantation after corneal collagen cross-linking in keratoconus: up to 2 years of follow-up. J Ophthalmol. 2015;2015:514834. doi:10.1155/2015/514834.

Kymionis GD, Grentzelos MA, Karavitaki AE, Zotta P, Yoo SH, Pallikaris IG. Combined corneal collagen cross-

linking and posterior chamber toric implantable collamer lens implantation for keratoconus. Ophthalmic Surg Lasers Imaging. 2011;42:e22–5.

Fadlallah A, Dirani A, El Rami H, Cherfane G, Jarade E. Safety and visual outcome of Visian toric ICL implantation after corneal collagen cross-linking in keratoconus. J Refract Surg. 2013;29:84–9. 68. Shafik Shaheen M, El-Kateb M, El-Samadouny MA, Zaghloul H. Evaluation of atoric implantable collamer lens after corneal collagen crosslinking in treatment of early-stage keratoconus: 3-year follow-up. Cornea. 2014;33(5):475–80.

Kymionis GD, Grentzelos MA, Portaliou DM, et al. Photorefractive keratectomy followed by same-day corneal collagen cross-linking after intrastromal corneal ring segment implantation for pellucid marginal degeneration. J Cataract Refract Surg. 2010;36:1783–5.

Kanellopoulos AJ, Skouteris VS.

Secondary ectasia due to forceps injury at childbirth: management with combined topography-guided partial PRK and collagen cross-linking (Athens protocol) and subsequent phakic IOL implantation. J Refract Surg. 2011;27:635–6.

Iovieno A, Légaré ME, Rootman DB, Yeung SN, Kim P, Rootman DS. Intracorneal ring segments implantation followed by same-day photorefractive

Volume 2, Issue 1, 2023

medunion medunion.uz

keratectomy and corneal collagen cross- linking in keratoconus. J Refract Surg. 2011;27:915–8.

Kremer I, Aizenman I, Lichter H, Shayer S, Levinger S. Simultaneous wavefront-guided photorefractive keratectomy and corneal collagen crosslinking after intrastromal corneal ring segment implantation for keratoconus. J Cataract Refract Surg. 2012;38:1802–7. 73. Coskunseven E, Jankov MR II, Grentzelos MA, Plaka AD, Limnopoulou

AN, Kymionis GD. Topography-guided transepithelial PRK after intracorneal ring segments implantation and corneal collagen CXL in a three-step procedure for keratoconus. J Refract Surg. 2013;29:54–8. 74. Coskunseven E, Sharma DP, Jankov MR II, Kymionis GD, Richoz O, Hafezi F. Collagen copolymer toric phakic intraocular lens for residual myopic astigmatism after intrastromal corneal ring segment implantation and corneal collagen crosslinking in a 3-stage procedure for keratoconus. J Cataract Refract Surg. 2013;39:722–9.

Rizayev J., Tuychibaeva D. Forecasting the incidence and prevalence of glaucoma in the Republic of Uzbekistan. Journal of Biomedicine and Practice. 2020;6(5):180–186.

Тuychibaeva Д.M. Longitudinal changes in the disability due to glaucoma in Uzbekistan // J.ophthalmol.(Ukraine). 2022;507.4:12-17.

Yıldırım Y, Olcucu O, Gunaydin ZK, et al. Comparison of accelerated corneal collagen cross-linking types for treating keratoconus. Curr Eye Res. 2017;30:1–5.

Alnawaiseh M, Rosentreter A, Böhm MR, Eveslage M, Eter N, Zumhagen L. Accelerated (18 mW/cm2) corneal collagen cross-linking for progressive

keratoconus. Cornea. 2015;34(11):1427– 31.

Tomita M, Mita M, Huseynova T. Accelerated versus conventional corneal collagen crosslinking. J Cataract Refract Surg. 2014;40(6):1013–20.

Ozgurhan EB, Celik U, Bozkurt E, Demirok A. Evaluation of subbasal nerve morphology and corneal sensation after accelerated corneal collagen cross-linking treatment on keratoconus. Curr Eye Res. 2015;40(5):484–9.

Hashemian H, Jabbarvand M, Khodaparast M, Ameli K. Evaluation of corneal changes after conventional versus accelerated corneal cross-linking: a randomized controlled trial. J Refract Surg. 2014;30(12):837–42.

Ng AL, Chan TC, Cheng AC. Conventional versus accelerated corneal collagen cross-linking in the treatment of keratoconus. Clin Exp Ophthalmol. 2016;44(1):8–14.

Razmjoo H, Peyman A, Rahimi A, Modrek HJ. Cornea collagen cross-linking for keratoconus: a comparison between accelerated and conventional methods. Adv Biomed Res. 2017;22(6):10.

Cınar Y, Cingü AK, Türkcü FM, et al. Comparison of accelerated and conventional corneal collagen cross-linking for progressive keratoconus. Cutan Ocul Toxicol. 2014;33(3):218–22.

Choi M, Kim J, Kim EK, Seo KY, Kim TI. Comparison of the conventional

Dresden protocol and accelerated protocol with higher ultraviolet intensity in corneal collagen cross-linking for keratoconus. Cornea. 2017;36(5):523–9.

Shetty R, Nagaraja H, Jayadev C, Pahuja NK, Kurian Kummelil M, Nuijts RMMA. Accelerated corneal collagen cross- linking in paediatric patients: two-year follow-up results. BioMed Res

Volume 2, Issue 1, 2023

medunion medunion.uz

;2014:894095. doi:10.1155/2014/894095.

Sadoughi MM, Einollahi B, Baradaran-Rafii A, Roshandel D, Hasani H, Nazeri M. Accelerated versus conventional corneal collagen cross-linking in patients with keratoconus: an intrapatient comparative study. Int Ophthalmol. 2016. doi:10.1007/s10792-016-0423-0.

Cummings AB, McQuaid R, Naughton S, Brennan E, Mrochen M. Optimizing corneal cross-linking in the

treatment of keratoconus: a comparison of outcomes after standard and high intensity protocols. Cornea. 2016;35(6):814–22.

Ng AL, Chan TC, Lai JS, Cheng AC. Comparison of the central and peripheral corneal stromal demarcation line depth in conventional versus accelerated collagen cross-linking. Cornea. 2015;34(11):1432–6.

Kymionis GD, T soulnaras KI, Liakopoulos DA, Skatharoudi CA, Grentzelos MA, Tsakalis NG. Corneal stromal demarcation line depth following standard and a modified high intensity corneal cross-linking protocol. J Refract Surg. 2016;32(4):218–22.

Kamiya K, Shimizu K, Kobashi H, et al. Three-year follow-up of posterior chamber toric phakic intraocular lens implantation for the correction of high myopic astigmatism in eyes with keratoconus. Br J Ophthalmol. 2015;99:177–83.

Nanavaty MA, Lake DB, Daya SM. Outcomes of pseudophakic toric intraocular lens implantation in keratoconic eyes with cataract. J Refract Surg. 2012;28(12):884– 9.

Peyman A, Nouralishahi A, Hafezi F, Kling S, Peyman M. Stromal demarcation line in pulsed versus continuous light accelerated corneal cross-linking for

keratoconus. J Refract Surg. 2016;32:206– 8.

Mazzotta C, Traversi C, Paradiso AL, et al. Pulsed light accelerated crosslinking vs continuous light accelerated crosslinking: one-year results. J Ophthalmol. 2014;2014:604731. doi:10.1155/2014/604731.

Park YM, Kim HY, Lee JS. Comparison of 2 different methods of transepithelial corneal collagen cross- linking: analysis of corneal histology and

hysteresis. Cornea. 2017;36(7):860–5.

Kissner A, Spoerl E, Jung R, Spekl K, Pillunat LE, Raiskup F. Pharmacological modification of the epithelial permeability by benzalkonium chloride in UVA/riboflavin corneal collagen cross-linking. Curr Eye Res. 2010;35(8):715–21.

Armstrong BK, Lin MP, Ford MR, et al. Biological and biomechanical responses to traditional epithelium-off and transepithelial riboflavin-UVA CXL techniques in rabbits. J Refract Surg. 2013;29(5):332–41.

Caporossi A,

Baiocchi S, Caporossi T ,

Transepithelial corneal

crosslinking for keratoconus: qualitative investigation by in vivo HRT II confocal analysis. Eur J Ophthalmol. 2012;22(Suppl 7):S81–8.

Seiler TG, Fischinger I, Senfft T, Schmidinger G, Seiler T . Intrastromal application of riboflavin for corneal

Mazzotta C, Paradiso AL. collagen

crosslinking. Invest Ophthalmol Vis Sci. 2014;55(7):4261–5.

Dong Z, Zhou X. Collagen cross- linking with riboflavin in a femtosecond laser created pocket in rabbit corneas: 6-month results. Am J Ophthalmol. 2011;152(1):22– 7.

Eljarrat-Binstock E, Domb AJ. Iontophoresis: a non-invasive ocular drug

Volume 2, Issue 1, 2023

medunion medunion.uz

delivery. J Controlled Release. 2006;110(3):479–89.

Jouve L, Borderie V, Sandali O, et al. Conventional and iontophoresis corneal cross-linking for keratoconus: efficacy and assessment by optical coherence tomography and confocal microscopy. Cornea. 2017;36(2):153–62.

Lombardo M, Giannini D, Lombardo G, Serrao S. Randomized controlled trial comparing transepithelial corneal cross-linking using iontophoresis

energy emission: preliminary clinical and morphological outcomes. J Ophthalmol. 2016;2016:2031031.

Nordström M, Schiller M, Fredriksson A, Behndig A. Refractive improvements and safety with topography- guided corneal crosslinking for keratoconus: 1-year results. Br J Ophthalmol. 2017;101(7):920–5.

Lie J, Droutsas K, Ham L, et al. Isolated Bowman layer transplantation to manage persistent subepithelial haze after

with the Dresden protocol in progressive keratoconus. Ophthalmology. 2017;124(6):804–12.

Bonnel S, Berguiga M, De Rivoyre B, et al. Demarcation line evaluation of

iontophoresis-assisted

corneal collagen

keratoconus. J

;31(1):36–40.

Mazzotta

Traversi C, Baiocchi S, Iovieno A, Fontana L. Accelerated corneal collagen cross- linking using topography-guided UV-A

C,

Moramarco A,

transepithelial cross-linking for Refract Surg.

excimer laser surface ablation. J Cataract Refract Surg. 2010;36(6):1036–41.

van Dijk K, Parker J, Tong CM, et al. Midstromal isolated Bowman layer graft for reduction of advanced keratoconus: a technique to postpone penetrating or deep anterior lamellar keratoplasty. JAMA Ophthalmol. 2014;132(4):495–501.

van Dijk K, Liarakos VS, Parker J et al. Bowman layer transplantation to reduce and stabilize progressive, advanced keratoconus. Ophthalmology. 2015;122(5):909–17.

Загрузки

Опубликован

2023-05-17
Loading...